Molecular Phylogeny of Aegilops L. and Triticum L. Species Revealed by Internal Transcribed Spacers of Ribosomal Genes

Z. Safari ${ }^{1}$, and A. A. Mehrabi ${ }^{1 *}$

Abstract

Phylogenetic analysis of Triticum L. and Aegilops L. species was performed using the nuclear ribosomal Internal Transcribed Spacer (ITS) sequences. The full length of PCR products for ITS1 and ITS2 ranged from 650 bp to 700 bp, respectively. Sequence divergences between species were estimated following aligning. The average $\mathbf{G}+\mathbf{C}$ contents of the ITS regions was $\mathbf{6 0 . 8 \%}$ for ITS2 and $\mathbf{6 1 . 5 \%}$ for ITS1. The phylogenetic analyses were constructed using the Neighbor-Joining (NJ) method based on pairwise genetic distances. The resulting NJ tree successfully separated Triticum and Aegilops species and displayed three clusters, einkorn wheats, polyploid wheats, and Aegilops. Our results confirmed that the A genome of bread wheat is more related to T. urartu than T. boeticum. In the case of the \mathbf{D} genome, the affinity between Ae. tauschii and bread wheat was greater than other D genome-bearing species of Aegilops (Ae. crassa and Ae. cylindrica). Obtained results also revealed that Ae. speltoides was separated from Aegilops cluster and grouped with polyploid wheats. The close relationship between Ae. speltoides and polyploid wheats indicates that the former is the most likely donor of the B genomes to wheats. The present study verified the potential of ITS regions in phylogenetic studies and strongly supported the evolution of cultivated wheats, which occurred through hybridization and polyploidization between Triticum and Aegilops species.

Keywords: PCR products, Phylogenetics, Polyploid wheats, Rdna.

INTRODUCTION

Triticum L. and Aegilops L. (family Poaceae), two important genetic and economic resources genera of the tribe Triticeae, are closely related. Genomic constitution of the different Triticum and Aegilops species were established by Kihara (1954) using the numerous cytogenetic analyses. These finding subsequently reviewed by molecular, cytoplasmic and cytological studies (e.g., Wang et al., 2000; Huang et al., 2002; Sallares and Brown, 2004; Baum et al., 2009, Vakhitov et al., 2003). These studies have described 22 Aegilops and 5 Triticum species, including diploid $(2 n=2 x=14)$, tetraploid $(2 n=4 x=$ $28)$ and hexaploid ($2 n=6 x=42$) cytotypes. Common wheat or bread wheat (Triticum
aestivum L.), has been described as an allohexaploid species ($\mathrm{BA}^{\mathrm{u}} \mathrm{D}$) derived through hybridization and allopolyploidization. Two or three diploid ancestors have shared their homeologus genomes in derivate allopolyploid species (Petersen et al., 2006). The origin of the polyploid wheat genomes (A, B, D, and G) has been frequently the subject of numerous studies (Vakhitov et al. 2003; Petersen et al., 2006; Baum et al., 2009; Golovnina et al., 2007, 2009).

The genus Aegilops played a significant role in the evolution and domestication of wheat through natural hybridization (Sliai and Amer, 2011). Aegilops is classified into six sections or subgenera (Eig, 1929; Kihara, 1954; Vakhitov et al., 2003). The seven

[^0]basic genomes in the genus are $\mathrm{C}, \mathrm{D}, \mathrm{M}, \mathrm{N}$, S, T and U (Sasanuma et al., 2004).
The A genome of the bread wheat is the only wheat-specific genome and was proposed to be originated from einkorn wheat species; T. boeoticum, T. monococcum, and T. urartu. The genome of T. urartu is described as A^{u} while T. boeoticum and T. monococcum have the A^{b} genome (Vakhitov et al., 2003; Golovnina et al., 2009).
Some Aegilops species are considered as the donors of the two other genomes of wheat (Baum et al., 2009; Sliai and Amer, 2011). It has been found that B and G genomes of polyploid wheat species were closely similar to the S genome in the Sitopsis section of Aegilops (Zhang et al., 2002; Sallares and Brown, 2004; Kilian et al., 2011; Haider, 2013). While Ae. tauschii L., from section Vertebrata, served as a donor of the D genome (Vakhitov et al. 2003; Sasanuma et al. 2004; Golovnina et al. 2009; Bordbar et al., 2011) .The close genetic relationship between Aegilops species and polyploid wheats attracted a lot of attention to reveal the phylogenetic relationships between them.
Phylogenetic relationships between Aegilops and Triticum have been investigated based on morphological, cytogenetical, and molecular studies, for which it is necessary to find an appropriate molecular marker (Alnaddaf et al., 2012, 2013; Kilian et al., 2011). DNA markers have been used widely in botanical studies and provided new information on phylogeny and genetic relationships of different species of Triticum-Aegilops (e.g., Huang et al., 2002; Sallares and Brown, 2004; Yamane and Kawahara, 2005; Petersen et al., 2006; Poczai and Hyvonen, 2010).

Of the available molecular techniques, analysis of nuclear ribosomal DNA (nrDNA) regions has been proved useful for identifying genetic variation and inferring evolutionary relationships in all eukaryote groups. The rDNA spacer regions could have potential to phylogenetic studies because of their universality, simplicity, and
small size (Nepolo et al., 2010; Poczai and Hyvonen, 2010). The rDNA regions are parts of repeat units of tandem copies, which are located at the chromosomal sites known as Nucleolus Organizing Regions (NORs) (Alvarez and Wendel, 2003; Haque et al., 2009).

Each rDNA gene comprises the $18 \mathrm{~S}, 5.8 \mathrm{~S}$ and 28 S rRNA sub-units which called Internal Transcribed Sequenes (ITS), and an InterGenic Spacer (IGS), that found universally in plants. These gene families contain conserved (transcribed) and nonconserved (partly transcribed) regions, each part of which evolves with different rates (Alvarez and Wendel, 2003; Haque et al., 2009; Poczai and Hyvonen, 2010).
The conserved regions (18S and 28 S genes) of rDNA display relatively little variation and are analyzed to infer phylogenetic relationships at higher taxonomic levels (e.g., family) (Nepolo et al., 2010; Poczai and Hyvonen, 2010). Other parts, i.e. the spacer regions (ITS and IGS), which evolve more quickly and are highly polymorphic, can be easily used in plant systematic at the low-level (generic or population) (Singh et al., 2008; Haque et al., 2009).

For over a decade, to infer plants phylogenetic and evolutionary relationships, and detect their genetic diversity, the most widely used marker in plants was the ITS. The sequence length of ITS, which has three components, namely, the ITS1, ITS2 and 5.8 S , varies between 500 and 750 bp in angiosperms to $1,500-3,500 \mathrm{bp}$ in other seed plants (Alvarez and Wendel, 2003; Calonje et al. 2009).
The nature of the ITS region, its biparental inheritance, its high number of copies, and existence in virtually all organisms make it useful in studies concerning parentage of polyploids, hybrid formation and phylogenetics (Barkman and Simpson, 2002; Albach and Chase, 2004; Fehrer et al., 2007). Since the first application of ITS by Porter and Collins (1991), it has been used widely for phylogeny reconstruction in Triticeae (Goryunova et al., 2005; Calonje et
al., 2009; Haque et al., 2009; Logacheva et al., 2010; Nepolo et al., 2010; Poczai and Hyvonen, 2010; Alnaddaf et al., 2013; Bordbar et al., 2011).

The present study aimed to compare the sequence variations of the ITS regions in accessions of 12 Triticum and Aegilops species, representing different genomes, to infer their phylogenetic relationships.

MATERIALS AND METHODS

Plant Material

A set of 71 accessions from 12 species belonging to Aegilops and Triticum, representing different genomes ($\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, M, S and U) and different ploidy levels (diploid, tetraploid and hexaploid), were included in this study. Seeds of accessions, which were selected to display various geographical distributions of Aegilops and Triticum species in Iran, were provided by the Gene Bank of the University of Ilam, Ilam province.

One accession of wild barley, Hordeum spontaneum (K. Koch) Thell, was chosen as an out-group due to its close relationship with Aegilops and Triticum. The ploidy level, genome type, and source of the plant materials used in this study are shown in Table 1.

DNA Extraction and PCR Amplification

Total genomic DNA was extracted from fresh leaves of a single plant of each accession, using the CTAB (CetylTrimethyl Ammonium Bromide) method (Doyle and Doyle, 1987).

The quality of isolated DNA was checked by electrophoresis on 0.8% (90 V at 45 minutes) agarose gel.
The ITS region was amplified by two primer pairs (Table 2). PCR Reactions were carried out in $50 \mu \mathrm{~L}$ reaction mixture, consisted of 25 $\mu \mathrm{L}$ of mastermix (containing Taq polymerase, dNTPs, MgCl_{2} and a reaction buffer), $1 \mu \mathrm{~L}$ of each primer (forward and reverse), $2 \mu \mathrm{~L}$ of genomic DNA and $21 \mu \mathrm{~L}$ sterile water. Cycling conductions were adjusted according to the following PCR program: an initial denaturation at $94^{\circ} \mathrm{C}$ for 4 minutes and 38 thermal cycles each of which included denaturation at $92^{\circ} \mathrm{C}$ for 30 seconds, annealing at TA (Table 2) for 1 minute and extension at $72^{\circ} \mathrm{C}$ for 45 seconds). Another denaturation at $94^{\circ} \mathrm{C}$ for 30 seconds and annealing for 30 seconds, was conducted. The final extension was performed at $72^{\circ} \mathrm{C}$ for 5 minutes.

Purification and Sequencing

Amplified fragments were separated by electrophoresis on 1.5\% agarose gel prepared with 1X TAE (Tris-Acetate EDTA). A 100 bp DNA ladder was used to estimate the molecular weights of the amplified products. In order to purify and sequence PCR products, $25-30 \mu \mathrm{~L}$ of each of the latter were delivered to Bioneer Company, Korea. Sequencing reactions were carried out in the forward direction.

Data Analysis

Sequences were aligned by MEGA5.0 based on Clustul W. Polymorphism, nucleotide composition, and nucleotide pair
Table 1. Details of plant materials and their collection places.

Code	Species	Genom		Longitude	latitude	Elevation (meter)	Source
1	T. aestivum	$B^{4}{ }^{4}$ D	6x	$45^{\circ} 23^{\prime} 16.21^{\prime \prime} \mathrm{E}$	$36^{\circ} 57^{\prime} 22.80^{\prime \prime} \mathrm{N}$	1319.08	West Azerbaijan, Naghadeh, Iran
2	T. aestivum	$B A^{4} \mathrm{D}$	6 x	$55^{\circ} 9^{\prime} 34.77{ }^{\prime \prime} \mathrm{E}$	$37^{\circ} 14^{\prime} 26.40^{\prime \prime} \mathrm{N}$	37.68	Golestan, Gonbad, Iran
3	T. aestivum	$B^{4}{ }^{\text {d }}$ D	6x	$49^{\circ} 59{ }^{\prime} 53.65^{\prime \prime} \mathrm{E}$	$36^{\circ} 16^{\prime} 25.17{ }^{\prime \prime} \mathrm{N}$	1305.22	Qazvin, Iran
4	T. aestivum	$B^{4}{ }^{4} \mathrm{D}$	6 x	$51^{\circ} 51^{\prime} 46.22^{\prime \prime} \mathrm{E}$	$32^{\circ} 0^{\prime} 29.19^{\prime \prime} \mathrm{N}$	1825.67	Isfahan, Shahreza, Iran
5	T. aestivum	$B^{4}{ }^{\text {a }}$ D	6 x	$49^{\circ} 52^{\prime} 12.31^{\prime \prime} \mathrm{E}$	$31^{\circ} 49^{\prime} 26.26^{\prime \prime} \mathrm{N}$	851.42	Khuzestan, Izeh, Iran
6	T. aestivum	$B^{4}{ }^{\text {u }}$ D	6x	$46^{\circ} 10^{\prime} 23.85^{\prime \prime} \mathrm{E}$	$33^{\circ} 7{ }^{\prime} 3.59{ }^{\prime \prime} \mathrm{N}$	153.97	Ilam, Mehran, Iran
7	T. boeticum	$\mathrm{A}^{\text {b }}$	2 x	$48^{\circ} 53{ }^{\prime} 3.85^{\prime \prime} \mathrm{E}$	$33^{\circ} 13^{\prime} 2.22^{\prime \prime} \mathrm{N}$	1030.13	Lorestan, Sepiddasht, Iran
8	T. boeticum	$\mathrm{A}^{\text {b }}$	2x	$50^{\circ} 38^{\prime} 16.377^{\prime \prime} \mathrm{E}$	$36^{\circ} 12^{\prime} 53.95{ }^{\prime \prime} \mathrm{N}$	1856.64	Alborz, Taleghan, Iran
9	T. boeticum	$\mathrm{A}^{\text {b }}$	2x	$46^{\circ} 29^{\prime} 31.92^{\prime \prime} \mathrm{E}$	$34^{\circ} 48^{\prime} 22.59^{\prime \prime} \mathrm{N}$	1313.41	Kermanshah, Javanrood, Iran
10	T. boeticum	$\mathrm{A}^{\text {b }}$	2x	$45^{\circ} 5^{\prime} 49.69^{\prime \prime} \mathrm{E}$	$37^{\circ} 2^{\prime} 11.17^{\prime \prime} \mathrm{N}$	1438.34	West Azerbaijan, Oshnavieh, Iran
11	T. boeticum	$\mathrm{A}^{\text {b }}$	2 x	$46^{\circ} 34^{\prime} 9.26^{\prime \prime} \mathrm{E}$	$33^{\circ} 45^{\prime} 57.47{ }^{\prime \prime} \mathrm{N}$	1014.23	Ilam, Sarableh, Iran
12	T. turgidum	$B^{\text {a }}$	4x	$48^{\circ} 40^{\prime} 14.23{ }^{\prime \prime} \mathrm{E}$	$31^{\circ} 19^{\prime} 5.98^{\prime \prime} \mathrm{N}$	20.81	Khuzestan, Ahvaza, Iran
13	T. turgidum	$B^{\text {a }}$	4 x	$48^{\circ} 17^{\prime} 59.96^{\prime \prime} \mathrm{E}$	$38^{\circ} 15^{\prime} 13.45^{\prime \prime} \mathrm{N}$	1347.95	West Azerbaijan, Ardabil, Iran
14	T. turgidum	$\mathrm{BA}^{\text {u }}$	4 x	$51^{\circ} 35^{\prime} 15.08^{\prime \prime} \mathrm{E}$	$30^{\circ} 40^{\prime} 6.18^{\prime \prime} \mathrm{N}$	1839.00	Kohgiluye and Boyer-Ahmad, Yasooj, Iran
15	T. turgidum	$B^{\text {a }}$	4x	$47^{\circ} 8^{\prime} 10.37^{\prime \prime} \mathrm{E}$	$35^{\circ} 57^{\prime} 19.29^{\prime \prime} \mathrm{N}$	1927.23	Kordestan, Iran
16	T. turgidum	$B^{\text {A }}$	4 x	$59^{\circ} 37^{\prime} 0.32^{\prime \prime} \mathrm{E}$	$36^{\circ} 15^{\prime} 37.66^{\prime \prime} \mathrm{N}$	981.90	Razavi Khorasan, Mashhad, Iran
17	T. turgidum	$\mathrm{BA}^{\text {u }}$	4x	$46^{\circ} 10^{\prime} 23.85^{\prime \prime} \mathrm{E}$	$33^{\circ} 7^{\prime} 3.59^{\prime \prime} \mathrm{N}$	153.97	Ilam, Mehran, Iran
18	T. urartu	$\mathrm{A}^{\text {u }}$	2 x	$46^{\circ} 14^{\prime} 7.70^{\prime \prime} \mathrm{E}$	$34^{\circ} 16^{\prime} 50.52^{\prime \prime} \mathrm{N}$	1549.51	Kermanshah, Kerand, Iran
19	T. urartu	$\mathrm{A}^{\text {u }}$	2x	$46^{\circ} 16^{\prime} 40.70^{\prime \prime} \mathrm{E}$	$36^{\circ} 14^{\prime} 20.20^{\prime \prime} \mathrm{N}$	1454.44	Kordestan, Saqqez, Iran
20	T. urartu	$\mathrm{A}^{\text {u }}$	2x	$46^{\circ} 10^{\prime} 32.45^{\prime \prime} \mathrm{E}$	$35^{\circ} 311^{\prime} 15.96{ }^{\prime \prime} \mathrm{N}$	1309.00	Kordestan, Marivan1, Iran
21	T. urartu	$\mathrm{A}^{\text {u }}$	2 x	$51^{\circ} 27^{\prime} 16.51{ }^{\prime \prime} \mathrm{E}$	$30^{\circ} 51^{\prime} 36.07{ }^{\prime \prime} \mathrm{N}$	2240.39	Kohgiluye and Boyer-Ahmad, Sisakht, Iran
22	T. urartu	$\mathrm{A}^{\text {u }}$	2x	$50^{\circ} 58{ }^{\prime} 51.74{ }^{\prime \prime} \mathrm{E}$	$32^{\circ} 16^{\prime} 13.66^{\prime \prime} \mathrm{N}$	2112.48	Chaharmahal and Bakhtiari, FarrokhShahr, Iran
23	T. urartu	A^{u}	2x	$47^{\circ} 35^{\prime} 46.78^{\prime \prime} \mathrm{E}$	$34^{\circ} 46^{\prime} 40.42^{\prime \prime} \mathrm{N}$	1690.33	Kermanshah, Sonqor, Iran
24	T. urartu	$\mathrm{A}^{\text {u }}$	2x	$47^{\circ} 26^{\prime} 9.46^{\prime \prime} \mathrm{E}$	$34^{\circ} 23^{\prime} 25.72^{\prime \prime} \mathrm{N}$	1363.96	Kermanshah, Behistun, Iran
25	T. urartu	$\mathrm{A}^{\text {u }}$	2x	$47^{\circ} 26^{\prime} 9.46^{\prime \prime} \mathrm{E}$	$34^{\circ} 23^{\prime} 25.72^{\prime \prime} \mathrm{N}$	1363.96	Kermanshah, Iran
26	T. urartu	A^{u}	2 x	$46^{\circ} 10^{\prime} 32.45^{\prime \prime} \mathrm{E}$	$35^{\circ} 31^{\prime} 15.96{ }^{\prime \prime} \mathrm{N}$	1309.00	Kordestan, Marivan2, Iran
27	Ae. triaristata	UM	4x	$48^{\circ} 20^{\prime} 56.17^{\prime \prime} \mathrm{E}$	$32^{\circ} 27^{\prime} 13.733^{\prime \prime} \mathrm{N}$	148.07	Khuzestan, Andimeshk, Iran
28	Ae. triaristata	UM	4x	$48^{\circ} 1^{\prime} 45.74{ }^{\prime \prime} \mathrm{E}$	$33^{\circ} 29^{\prime} 17.22^{\prime \prime} \mathrm{N}$	1008.11	Lorestan, Veysian, Iran
29	Ae. triaristata	UM	4x	$47^{\circ} 22^{\prime} 58.42^{\prime \prime} \mathrm{E}$	$33^{\circ} 8^{\prime} 38.04{ }^{\prime \prime} \mathrm{N}$	661.51	Ilam, Darreh Shahr, Iran
30	Ae. triaristata	UM	4x	$47^{\circ} 53^{\prime} 10.60^{\prime \prime} \mathrm{E}$	$33^{\circ} 18^{\prime} 53.48^{\prime \prime} \mathrm{N}$	813.45	Lorestan, Afrineh, Iran
31	Ae. triaristata	UM	4x	$46^{\circ} 24^{\prime} 55.01{ }^{\prime \prime} \mathrm{E}$	$33^{\circ} 38^{\prime} 5.91{ }^{\prime \prime} \mathrm{N}$	1382.58	Ilam, Banganjab, Iran
32	Ae. crassa	DM	4 x	$52^{\circ} 16^{\prime} 34.44^{\prime \prime} \mathrm{E}$	$30^{\circ} 2^{\prime} 42.21^{\prime \prime} \mathrm{N}$	1885.61	Fars, Sepidan, Iran
33	Ae. crassa	DM	4 x	$45^{\circ} 59^{\prime} 13.95^{\prime \prime} \mathrm{E}$	$37^{\circ} 44^{\prime} 39.54{ }^{\prime \prime} \mathrm{N}$	1409.40	East Azarbaijan, Azarshahr, Iran
34	Ae. crassa	DM	4 x	$47^{\circ} 35^{\prime} 46.78{ }^{\prime \prime} \mathrm{E}$	$34^{\circ} 46^{\prime} 40.42^{\prime \prime} \mathrm{N}$	1690.33	Kermanshah, Sonqor, Iran
35	Ae. crassa	DM	4x	$51^{\circ} 17^{\prime} 40.59{ }^{\prime \prime} \mathrm{E}$	$31^{\circ} 58^{\prime} 47.25{ }^{\prime \prime} \mathrm{N}$	2241.89	Chaharmahal and Bakhtiari, Borujn, Iran
36	Ae. crassa	DM	4x	$46^{\circ} 24^{\prime} 55.01{ }^{\prime \prime} \mathrm{E}$	$33^{\circ} 38^{\prime} 5.91{ }^{\prime \prime} \mathrm{N}$	1382.58	Ilam, Iran
37	Ae. crassa	DM	4 x	$47^{\circ} 36^{\prime} 16.62^{\prime \prime} \mathrm{E}$	$34^{\circ} 16^{\prime} 18.89{ }^{\prime \prime} \mathrm{N}$	1567.97	Kermanshah, Harsin, Iran

Continued of Table 1.

Code	Species	Genome		Longitude	latitude	Elevation (meter)	Source
38	Ae. cylindrica	CD	4 x	$47^{\circ} 8^{\prime} 10.37^{\prime \prime} \mathrm{E}$	$35^{\circ} 57^{\prime} 19.29^{\prime \prime} \mathrm{N}$	1927.23	Kordestan, Iran
39	Ae. cylindrica	CD	4 x	$47^{\circ} 36^{\prime} 16.62^{\prime \prime} \mathrm{E}$	$34^{\circ} 16^{\prime} 18.89^{\prime \prime} \mathrm{N}$	1567.97	Kermanshah, Harsin, Iran
40	Ae. cylindrica	CD	4 x	$47^{\circ} 39^{\prime} 53.46^{\prime \prime} \mathrm{E}$	$38^{\circ} 23{ }^{\prime} 41.38^{\prime \prime} \mathrm{N}$	1419.37	Ardabil, Meshgin Shahr, Iran
41	Ae. cylindrica	CD	4 x	$48^{\circ} 30^{\prime} 31.40^{\prime \prime} \mathrm{E}$	$36^{\circ} 40^{\prime} 58.82^{\prime \prime} \mathrm{N}$	1699.49	Zanjan, Iran
42	Ae. cylindrica	CD	4 x	$48^{\circ} 52^{\prime} 7.37{ }^{\prime \prime} \mathrm{E}$	$38^{\circ} 25^{\prime} 20.84^{\prime \prime} \mathrm{N}$	-23.59	Gilan, Astara, Iran
43	Ae. ovata	UM	4 x	$47^{\circ} 39^{\prime} 53.46^{\prime \prime} \mathrm{E}$	$38^{\circ} 23^{\prime} 41.38^{\prime \prime} \mathrm{N}$	1419.37	Ardabil, Meshgin Shahr, Iran
44	Ae. ovata	UM	4 x	$46^{\circ} 18^{\prime} 26.34{ }^{\prime \prime} \mathrm{E}$	$33^{\circ} 49^{\prime} 47.28^{\prime \prime} \mathrm{N}$	1177.85	Ilam, Eyvan, Iran
45	Ae. ovata	UM	4 x	$46^{\circ} 31^{\prime} 40.34{ }^{\prime \prime} \mathrm{E}$	$34^{\circ} 6^{\prime} 47.47{ }^{\prime \prime} \mathrm{N}$	1335.05	Kermanshah,Eslamabad-e Gharb, Iran
46	Ae. ovata	UM	4 x	$47^{\circ} 4^{\prime} 6.09^{\prime \prime} \mathrm{E}$	$38^{\circ} 29^{\prime} 21.95^{\prime \prime} \mathrm{N}$	1376.54	East Azarbaijan, Ahar, Iran
47	Ae. ovata	UM	4 x	$46^{\circ} 34^{\prime} 9.26^{\prime \prime} \mathrm{E}$	$33^{\circ} 45^{\prime} 57.47^{\prime \prime} \mathrm{N}$	1014.23	Ilam, Sarableh, Iran
48	Ae. ovata	UM	4 x	$47^{\circ} 39^{\prime} 53.46^{\prime \prime} \mathrm{E}$	$38^{\circ} 23^{\prime} 41.38^{\prime \prime} \mathrm{N}$	1419.37	Ardabil, Meshgin Shahr, Iran
49	Ae. speltoides	S	2 x	$45^{\circ} 34^{\prime} 39.67{ }^{\prime \prime} \mathrm{E}$	$34^{\circ} 30^{\prime} 57.25^{\prime \prime} \mathrm{N}$	354.25	Kermanshah, Qasr-e Shirin, Iran
50	Ae. speltoides	S	2 x	$53^{\circ} 41^{\prime} 16.97{ }^{\prime \prime} \mathrm{E}$	$32^{\circ} 25^{\prime} 40.47{ }^{\prime \prime} \mathrm{N}$	1139.54	Iran
51	Ae. speltoides	S	2 x	$53^{\circ} 41^{\prime} 16.97{ }^{\prime \prime} \mathrm{E}$	$32^{\circ} 25^{\prime} 40.47{ }^{\prime \prime} \mathrm{N}$	1139.54	Iran
52	Ae. speltoides	S	2 x	$47^{\circ} 22^{\prime} 58.42^{\prime \prime} \mathrm{E}$	$33^{\circ} 8^{\prime} 38.04^{\prime \prime} \mathrm{N}$	661.51	Ilam, Darreh Shahr, Iran
53	Ae. speltoides	S	2 x	$47^{\circ} 22^{\prime} 58.42^{\prime \prime} \mathrm{E}$	$33^{\circ} 8^{\prime} 38.04^{\prime \prime} \mathrm{N}$	661.51	Ilam, Darreh Shahr, Iran
54	Ae. speltoides	S	2 x	$47^{\circ} 25^{\prime} 28.32^{\prime \prime} \mathrm{E}$	$32^{\circ} 59^{\prime} 19.03^{\prime \prime} \mathrm{N}$	878.85	Ilam, Abdanan, Iran
55	Ae. tauschii	D	2 x	$49^{\circ} 35^{\prime} 32.69^{\prime \prime} \mathrm{E}$	$37^{\circ} 16^{\prime} 51.41^{\prime \prime} \mathrm{N}$	2.04	Gilan, Iran
56	Ae. tauschii	D	2x	$48^{\circ} 17^{\prime} 59.96^{\prime \prime} \mathrm{E}$	$38^{\circ} 15^{\prime} 13.45^{\prime \prime} \mathrm{N}$	1347.95	Ardabil, Iran
57	Ae. tauschii	D	2 x	$47^{\circ} 4^{\prime} 6.09^{\prime \prime} \mathrm{E}$	$38^{\circ} 29^{\prime} 21.95^{\prime \prime} \mathrm{N}$	1376.54	East Azarbaijan, Ahar, Iran
58	Ae. tauschii	D	2 x	$50^{\circ} 38^{\prime} 35.04{ }^{\prime \prime} \mathrm{E}$	$36^{\circ} 55^{\prime} 36.58^{\prime \prime} \mathrm{N}$	8.99	Mazandaran, Ramsar, Iran
59	Ae. tauschii	D	2 x	$48^{\circ} 30^{\prime} 31.40^{\prime \prime} \mathrm{E}$	$36^{\circ} 40^{\prime} 58.82^{\prime \prime} \mathrm{N}$	1699.49	Zanjan, Iran
60	Ae. tauschii	D	2 x	$54^{\circ} 51^{\prime} 23.84^{\prime \prime} \mathrm{E}$	$36^{\circ} 54^{\prime} 26.59{ }^{\prime \prime} \mathrm{N}$	124.82	Golestan, Aliabad-e Katul, Iran
61	Ae. triuncialis	UC	4 x	$53^{\circ} 41^{\prime} 16.97{ }^{\prime \prime} \mathrm{E}$	$32^{\circ} 25^{\prime} 40.47^{\prime \prime} \mathrm{N}$	1139.54	Iran
62	Ae. triuncialis	UC	4 x	$47^{\circ} 1^{\prime} 36.07^{\prime \prime} \mathrm{E}$	$35^{\circ} 54^{\prime} 49.15^{\prime \prime} \mathrm{N}$	1844.94	Kordestan, Divandarreh, Iran
63	Ae. triuncialis	UC	4 x	$48^{\circ} 23^{\prime} 55.75{ }^{\prime \prime} \mathrm{E}$	$33^{\circ} 34^{\prime} 54.62^{\prime \prime} \mathrm{N}$	1496.27	Lorestan, Iran
64	Ae. triuncialis	UC	4x	$48^{\circ} 34^{\prime} 44.95^{\prime \prime} \mathrm{E}$	$38^{\circ} 24^{\prime} 46.70^{\prime \prime} \mathrm{N}$	1242.12	Gilan, Astara, Heyran, Iran
65	Ae. triuncialis	UC	4 x	$49^{\circ} 52^{\prime} 12.31^{\prime \prime} \mathrm{E}$	$31^{\circ} 49^{\prime} 26.26^{\prime \prime} \mathrm{N}$	851.42	Khoozestan, Izah, Iran
66	Ae. triuncialis	UC	4 x	$51^{\circ} 17^{\prime} 40.59^{\prime \prime} \mathrm{E}$	$31^{\circ} 58^{\prime} 47.25^{\prime \prime} \mathrm{N}$	2241.89	Chaharmahal and Bakhtiari, Borujn, Iran
67	Ae. umbellulata	U	2 x	$46^{\circ} 34^{\prime} 9.26^{\prime \prime} \mathrm{E}$	$33^{\circ} 45^{\prime} 57.47{ }^{\prime \prime} \mathrm{N}$	1014.23	Ilam, Sarableh, Iran
68	Ae. umbellulata	U	2x	$46^{\circ} 31^{\prime} 40.34^{\prime \prime} \mathrm{E}$	$34^{\circ} 6^{\prime} 47.47{ }^{\prime \prime} \mathrm{N}$	1335.05	Kermanshah, Eslamabad-e Gharb, Iran
69	Ae. umbellulata	U	2 x	$52^{\circ} 16^{\prime} 34.44{ }^{\prime \prime} \mathrm{E}$	$30^{\circ} 2^{\prime} 42.21{ }^{\prime \prime} \mathrm{N}$	1885.61	Fars, Sepidan, Iran
70	Ae. umbellulata	U	2 x	$46^{\circ} 55^{\prime} 6.98^{\prime \prime} \mathrm{E}$	$33^{\circ} 13^{\prime} 40.04{ }^{\prime \prime} \mathrm{N}$	1212.94	Ilam, Dehloran, Meymeh, Iran
71	Ae. umbellulata	U	2 x	$47^{\circ} 36^{\prime} 39.89^{\prime \prime} \mathrm{E}$	$33^{\circ} 31^{\prime} 38.84^{\prime \prime} \mathrm{N}$	1186.03	Lorestan, Kuhdasht, Iran
72	H. spontaneum	H	2 x	$46^{\circ} 17^{\prime} 56.14^{\prime \prime} \mathrm{E}$	$33^{\circ} 41^{\prime} 45.48^{\prime \prime} \mathrm{N}$	1040.31	Ilam, Chavar, Iran

frequencies, and number of variable sites was estimated by MEGA 5.0. Pairwise genetic distance of accessions and species were performed by DARwin 6.0. The phylogenetic trees were constructed based on Neighbor Joining, using MEGA 5.0. Bioplot of species was conducted using DARwin 6.0 based on Principal Component Analysis (PCA) and dissimilarity matrix of species.

RESULTS AND DISCUSSION

The nucleotide sequences of the ITS fragment by two spacers were determined in Aegilops and Triticum. A single band of 650 bp was observed in PCR products generated for ITS1 in all species analyzed. As for ITS2, the size of the single band generated in all species was 700 bp (Figure 1). Some accessions generated no PCR products. This may be due to mis-matching of primers to the target sites (probably, point mutation in these regions). Alnaddaf et al. (2013) and Bordbar et al. (2011) used the spacer regions to determine the genetic relationships among Aegilops and Triticum species. The entire length of ITS amplified in these two studies ranged from 600-602 bp. Wang et al. (2000) studied diploid species of Aegilops using ITS region. The ITS region varied from 601 to 607 bp . Similar results were obtained by Sharma et al. (2002).
ITS fragments showed polymorphism among accessions. A low variability of nucleotide sequences (16\%) was revealed for ITS1 Aegilops species. However, the higher level of ITS1sequence variation
(36\%) was found in Triticum. Divergence of ITS2 fragments ranged from 13% for Triticum species to 30% for Aegilops species. However, 40 and 34% of nucleotides were variable among all accessions (Triticum and Aegilops species) in ITS1 and ITS2 fragments, respectively. Conservation rate for ITS nucleotide sequences was relatively high for Triticum (60%) and Aegilops (66%) genera.
In the present study, the level of polymorphism in targeted loci was higher than those reported earlier in the ITS sequences for different species of Triticeae (Wang et al., 2000; Sharma et al., 2002; Goryunova et al., 2005; Alnaddaf et al., 2013). This is not surprising because there were many accessions, which were sampled from 12 species having seven different genomes and were collected from various geographical regions. Additionally, in all previous works, divergences were reported within species, whereas our results are based on interspecific polymorphism, which is a possible reason for the relatively higher variation observed here.

In both spacer regions (ITS1 and ITS2), the highest and lowest nucleotide numbers belonged to C and T , respectively. A similar result was obtained by Goryunova et al. (2005).

The average G+C contents of the sequences varied from 60.8% in ITS2 to 61.5% for ITS1. Analysis of nucleotide pair frequencies for ITSlindicates high rate of identity among aligned sequences. Therefore, 94.84% of nucleotide pairs were found as identical pairs and only 2.50% and 2.66% of sequences emerged as transitional pairs and transversional pairs, respectively.

Figure 1. Amplification of ITS region in 4 Triticum and 8 Aegilops species, Left: ITS1, Right: ITS2. The first well on the left of each gel: 100 bp DNA ladder.

As for ITS2, there were 95.12% identical pairs, 2.37% transitional pairs and 2.51% transversional pairs (Table 3).

Our observations strongly coincides with previous works that studied the ITS region of Triticum-Aegilops. Wang et al. (2000) reported that the $\mathrm{G}+\mathrm{C}$ content of the Aegilops species ranged from 61.1-62.9\%. The G+C\% of Triticum and Aegilops species in the study of Goryunova et al. (2005) ranged from 60.3 to 63.9%. Moreover, Zhang et al. (2002) mentioned that the G+C content of the ITS regions varied from 59 to 65%. On the other hand, Nalini et al. (2007) and Sharma et al. (2002) reported that the $\mathrm{G}+\mathrm{C} \%$ was $59-61.75$ and $58-61 \%$ both in common wheat, respectively.
There is a relationship between the GC content and complex secondary structures. The high GC content displays durability of the DNA and RNA secondary (Alvarez and Wendel, 2003).The high GC content of ITS sequences is also associated with evolution and adaptation to the changing environment (Alnaddaf et al., 2013).

The NJ dendrograms of accessions were conducted based on pairwise genetic distances (data not shown) for each spacer (Figures 2 and 3). The trees were relatively identical and divided the accessions in three main clusters. The first included einkorn wheats (T. urartu and T. boeticum), the second cluster comprises of two subgroups of polyploid wheats (T. aestivum, T. turgidum) and Ae. speltoides. The Aegilops cluster contained several subgroups. Ae. tauschii, Ae. crassa and Ae. cylindrica (only in ITS1 tree) clearly formed separated
subgroups, while the differentiation between other Aegilops species was comparatively ambiguous. Ae. ovata and Ae. umbellulata and only one accession of Ae. triaristata were grouped together. Other species also formed a mixed subgroup. There was a high similarity between the results of the two spacers. Mantel's test also showed an average correlation $(\mathrm{r}=0.18)$ between distance matrix of ITS1 and ITS2 that was statistically significant $\quad(\mathrm{P}=0.0001)$. Therefore, the rest analyses were conducted based on combined data.
The pairwise genetic distances of species ranged between 0.021 and 0.115 . The lowest distance was between $A e$. ovata and $A e$. umbellulata, which may be due to the similarity of their genome (including U genome). The highest similarity value was between T. boeticum and Ae. crassa. These species showed wide intraspecific divergences $(0.078,0.068)$ (Table 4).
As Table 4 shows, Ae umbellulata and Ae. tauschii have the lowest intraspecific variation. The low level of intraspecific variation of Ae. tauschii was supported by similar previous works (Sasanuma et al., 2004).

The general, topology of the dendrogram of species was similar to the dendrogram of accessions. Three major groups were recognized. The Aegilops group included all the Aegilops species except Ae. speltoides, which was clustered with polyploidy wheats. This finding was also supported by evidence based on genetic distance between species (see Figure 4 and Table 4).This divergence is probably due to its breeding system since

Table 3. Characteristics of nucleotide sequences of ITS1 and ITS2.

Primer	\%Nucleotide Composition	\%Nucleotide pair frequencies									
	T	16.90	TT	15.86	CT	0.79	AT	0.16	GT	0.31	
ITS1	C	33.00	TC	0.47	CC	31.41	AC	0.47	GC	0.31	
	A	21.60	TA	0.16	CA	0.47	AA	20.26	GA	0.63	
	G	28.50	TG	0.31	CG	0.31	AG	0.47	GG	27.33	
ITS2	T	17.50	TT	16.24	CT	0.70	AT	0.30	GT	0.40	
	C	32.10	TC	0.60	CC	30.86	AC	0.30	GC	0.30	
	A	21.70	TA	0.30	CA	0.30	AA	20.48	GA	0.60	
	G	28.70	TG	0.30	CG	0.30	AG	0.40	GG	27.50	

Table 4. Pairwise genetic distance within and among species.

Groups	Within groups	Amonggroups											
		$\stackrel{-}{-}$	\cdots	$\stackrel{\sim}{-}$	$\stackrel{-}{\sim}$	$\frac{1}{0}$	$\frac{1}{0}$	$\frac{1}{0}$	$\frac{1}{0}$	$\frac{1}{0}$	$\frac{1}{0}$	$\frac{1}{2}$	$\frac{i}{0}$
			$\begin{aligned} & 0 \\ & \risingdotseq \\ & \stackrel{\rightharpoonup}{3} \\ & \text { B } \end{aligned}$	$\begin{gathered} \bar{j} \\ \hline \end{gathered}$	ミ	$\begin{aligned} & 7 \\ & \text { B. } \\ & 0 \\ & 0 \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \end{aligned}$		$\frac{0}{2}$	$\begin{aligned} & \tilde{z} \\ & \frac{2}{0} \\ & \frac{1}{2} \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\Xi} \\ & \stackrel{y}{\Xi} \\ & \stackrel{n}{\Xi} \end{aligned}$		
T. aestivum	0.019												
T. boeticum	0.087	0.100											
T. turgidum	0.024	0.026	0.096										
T. urartu	0.040	0.077	0.065	0.073									
Ae. triaristata	0.029	0.059	0.084	0.056	0.062								
Ae. crassa	0.068	0.092	0.115	0.087	0.093	0.072							
Ae. cylindrica	0.027	0.057	0.082	0.054	0.059	0.029	0.068						
Ae. ovata	0.029	0.056	0.087	0.054	0.062	0.035	0.069	0.034					
Ae. speltoides	0.023	0.048	0.087	0.044	0.063	0.047	0.079	0.044	0.045				
Ae. tauschii	0.017	0.058	0.081	0.055	0.057	0.039	0.069	0.033	0.035	0.040			
Ae. triuncialis	0.020	0.057	0.082	0.054	0.059	0.023	0.069	0.025	0.033	0.044	0.036		
$A e$. umbellulata	0.013	0.055	0.084	0.051	0.058	0.030	0.067	0.028	0.021	0.038	0.031	0.028	

Ae. speltoides is the only cross-pollinated species and the most divergent among Aegilops and Triticum species (Giorgi et al., 2002). Such species contains higher levels of variation at the DNA level than selfpollinating species (Sasanuma et al., 2004). Differences between Ae. speltoides and the other Aegilops species have been detected in previous studies (Giorgi et al., 2002; Wang et al., 2000; Sallares and Brown, 2004; Yamane and Kawahara, 2005; Sliai and Amer, 2011).
Here, Ae. speltoides formed a cluster with T. aestivum and T. turgidum. This indicates that Ae. speltoides genome is closely related to the B genome of polyploied wheats. The vast majority of previous studies proposed Ae. speltoides as the donor of the B genome to polyploidy wheats (e.g., Khlestkina and Salina, 2001; Zhang et al., 2002; Sallares and Brown, 2004; Petersen et al., 2006; Kilian et al., 2007b; Eilam et al., 2007; Golovnin et al., 2007; Chalupska et al., 2008; Haider, 2013).
Other morphological and cytoplasmic evidence revealed the similarity of T. aestivum to the Sitopsis species of Aegilops to which Ae. speltoides belongs (Sasanuma et al., 2004; Baum et al., 2009).

In Golovnina et al. (2007) study, Ae. speltoides branched out before the separation of wild diploid Triticum and Aegilops species. This made Yamane and Kawahara, (2005) and Golovnina et al. (2007) suggest the inclusion of $A e$. speltoides into a new genus. In 1929, Eig separated and placed this species in another subsection Truncata Eig.
According to the constructed trees, two einkorn species T. boeticum and T. urartu were grouped in one cluster, which supported the similarity of their genomes (A with corresponding indices). There was a debate regarding which species was the donor of the A genome of polyploid wheats. The diploid species T. monococcum and T. boeoticum were suggested as the A genome donor of polyploidy wheats (e.g., Sallares and Brown, 1999, Khlestkina et al., 2001). Some other data, however, revealed that only T. boeoticum contributed to the formation of T. zhukovskyi and several artificial polyploids (Goncharov et al., 2007).

In this study, in order to clarify the origin of the A genome of polyploid wheat species, we focused on pairwise distance of species

Figure 2. Phylogenetic tree of Triticum L. and Aegilops L., accessions from 12 different species based on ITS1 sequences.

Figure 4. Phylogenetic tree of Triticum and Aegilops species constructed from ITS1+ITS2 sequences.
(Table 4). The higher distance between T. boeticum and common wheat compared to the observed distance between the latter and T. urartu, increasingly confirmed T. urartu as donor of the A genome to polyploid wheat. The same results were revealed by other studies such as Galili et al. (2000), who suggested T. urartu as the donor of the A genome of T. turgidum and T. timopheevii.
Konarev et al. (1979) proposed that the A genome of T. turgidum was derived from T. urartu and that of T. timopheevii from T. monococcum based on the immunological character of seed storage proteins. Nishikawa et al. (1992) suggested that the A genome of T. turgidum was possibly derived from both T. boeoticum and T. urartu. Similar results generated by other studies based on nucleotide sequences of rDNA (Zhang et al., 2002; Baum, et al. 2009) and other molecular data (Galili et al., 2000; Huang et al., 2002; Kilian et al., 2007a) clearly showed that T. urartu was the ancestor of the A genome of T. turgidum and T. timopheevii.

Regarding the Aegilops cluster, Ae. tauschii (D genome) and the closely related species Ae. crassa (DM genome) were divided in two separate groups, although the D genome of Ae. crassa was, most probably, inherited from Ae. tauschii (Badaeva et al.,
2002). The position of Ae. tauschii in NJ trees (Figures 2, 3, and 4) confirms its close relationship to bread wheat.
The closer genetic distance between $A e$. tauschii and polyploid wheats compared to that observed between the latter and the other D genome-bearing species (Ae. crassa and $A e$. cylindrica) may indicate that the source of the D genome in polyploidy wheats is Ae. tauschii (Table 4).
The close relationship between $A e$. tauschii and common wheat was inferred by Huang et al. (2002) and Dizkirici et al. (2016). The formation of hexaploid wheat by hybridization among diploid Ae tauschii and T. turgidum made Bordbar et al. (2011), Kilian et al. (2011), and Haider (2013) conclude that Ae. tauschii could serve as the donor of the D genome. The same results were also clearly revealed based on morphological comparison of various Aegilops and wheat species and their chromosomes (Pathak, 1940; Riley and Chapman, 1960). Zhang et al. (2002) crossed T. turgidum with Ae. tauschii and generated a synthetic hexaploid wheat. Interestingly, the latter conclusion may explain the main role of Ae. tauschii in bread making properties of common wheat and also the existence of Ae. tauschii as a weed among tetraploid wheat species (Vakhitov et al., 2003).

A large body of molecular studies reviewed the phylogenetic relationships of the three wheat genomes. Dizkirici et al. (2016) showed a close relationship between each of Ae. speltoides and Ae. tauschii and polyploid wheats using sequences of the ITS rDNA and matK genes. Buchner et al. (2004) analyzed sequences of transporter genes, which confirmed the close relationship between T. aestivum and $A e$. tauschii, and T. urartu and Ae. speltoides. Based on $18 S$ rRNA gene sequence (Sallares and Brown, 2004), Ae. tauschii was nominated as the D genome donor of T. aestivum and Ae. speltoides as the B genome donor. These evidences pointed to the outcrossing of Aespeltoides as the female parent of tetraploid wheats with T. urartu as the male parent.

In conclusion, all of the species tended to be clustered according to their genomes since the similar genomes were clustered together. T. boeticum and T. urartu (A genome), were found in one cluster. T. aestivum and T. turgidum, which have A and B genomes, were also grouped in one clade, Aegilops species were also grouped based on their genomes, and the species that carried the same genome showed the close position. Among Aegilops species, only Ae. speltoides was distinct and was grouped with Triticum (Figures 4 and 5).

Bioplot of species displayed distribution, distance and evolutionary relationships of species (Figure 6). According to the results generated, two einkorn species (T. urartu and T. boeticum) were distinct from other species, and two Triticum species (T. turgidum and T. aestivum) were positioned close to Aegilops species. This proves the close evolutionary relationships between Triticum and Aegilops. The results also confirmed that Aegilops species are progenitors of polyploid wheats.

The rDNA spacers have been proved to be useful as phylogenetic markers at both higher and lower level evolutionary studies. Here, the ITS region allowed revealing genetic relationships between Triticum and Aegilops species. Data obtained here also
allowed to separate Aegilops and Triticum. The two genera were incorporated into a single genus, Triticum Bowden by Vakhitov et al. (2003). This taxonomic revision was disapproved using several cytogenetic and molecular studies, which argue that Aegilops and Triticum are two distinct genera. In addition, Van-Slageren (1994) separated Ae. mutica from Aegilops and placed it into a mono-specific genus called Amblyopyrum Eig. Therefore, there are three genera: Triticum, Aegilops and Amblyopyrum (VanSlageren, 1994; Vakhitov et al., 2003; Yamane and Kawahara, 2005; Baum et al., 2009; Poczai and Hyvonen, 2010; Sliai and Amer, 2011).
The phylogenetic relationships among Aegilops groups (C, D, M, and U genomes) were unclear, and our findings were not able to identify the relationships among these species in more detail. Some Aegilops species such as Ae. ovata, Ae. umbellulata, Ae. triaristata, Ae. triuncialis and Ae. cylindrica were revealed (based on ITS2 sequences) to be closely related as they appeared as mix groups. Such ambiguity clarifies the necessity of searching for a

Figure 5. Genome relationship of Triticum and Aegilops species constructed from ITS1+ITS2 sequences.

Figure 6. The chart of bioplot obtained from principal component analysis in Aegilops and Triticum species.
method that is more capable for revealing phylogenetic relationships and speciation in depth.
It is apparent that cytogenetic analysis is one of the most effective methods for studying phylogeny and evolution of related species. Therefore, to take the potential results, the sampling must be extended to include more representative accessions of all genera and genomes within the Triticeae. Due to this relatively weak phylogenetic signal, constructing analyses combining ITS and cytogenetic data can be performed. Such data would provide a robust phylogenetic signal.
Hybridization and introgression are natural processes occurring among closely related species. All wild relatives of cultivated wheat have the potential to hybridize with wheat. This causes gene flow from diploid to polyploidy Triticeae (Bordbar et al. 2011; Kilian et al. 2011). It seems possible to recognize the relatives of wheat and extend gene flow from diploid species into common
wheat, in order to improve disease resistance and other useful traits in the latter.

ACKNOWLEDGEMENTS

The authors would like to thank Ilam University for the use of their facilities and support of this project.

REFERENCES

1. Albach, D. C. and Chase, M. W. 2004. Incongruence in Veroniceae (Plantaginaceae): Evidence from Two Plastid and a Nuclear Ribosomal DNA Region. Mol. Phylogenet. Evol., 32: 183197.
2. Alnaddaf, L. M., Moualla, M. Y. and Haider, N. 2013. Genetic Relationships among Aegilops L. and Triticum L. Species Based on the Internal Transcribed Spacer Sequences of nrDNA (ITS). Asian J. Agric. Sci., 5: 108-117.
3. Alnaddaf, L. M., Moualla, M. Y. and Haider, N. 2012. Resolving Genetic Relationships among Aegilops L. and Triticum L. Species Using Analysis of Chloroplast DNA by Cleaved Amplified Polymorphic Sequence (CAPS). Asian J. Agric. Sci., 4: 270-279.
4. Alvarez, I. and Wendel. J. F. 2003. Ribosomal ITS Sequences and Plant Phylogenetic Inference. Mol. Phylogenet. Evol., 29: 417-434.
5. Badaeva, E. D., Amosova, A. V., Muravenko, O. V., Samatadze, T. E., Chikida, N. N., Zelenin A. V., Friebe, B. and Gill, B. S. 2002. Genome Differentiation in Aegilops. 3. Evolution of the D-Genome Cluster. Plant Syst. Evol., 231: 163-190.
6. Bandopadhyay, R., Sharma, S., Rustgi, S., Singh, R., Kumar, A., Balyan, H. S. and Gupta, P. K. 2004. DNA Polymorphism among 18 Species of Triticum-Aegilops Complex Using Wheat EST-SSRs. Plant Sci., 166: 349-356.
7. Barkman, T. J. and Simpson, B. B. 2002. Hybrid Origin and Parentage of Dendrochilum acuiferum (Orchidaceae) Inferred in a Phylogenetic Context Using Nuclear and Plastid DNA Sequence Data. Syst. Bot., 27: 209-220.
8. Baum, B. R., Edwards, T. and Johnson, D. A. 2009. Phylogenetic Relationships among Diploid Aegilops Species Inferred from 5S rDNA Units. Mol. Phylogenet. Evol., 53: 34-44.
9. Bordbar, F., Rahiminejad, M. R., Saeidi, H. and Blattner, F. R. 2011. Phylogeny and Genetic Diversity of D-Genome Species of Aegilops and Triticum (Triticeae, Poaceae) from Iran Based on Microsatellites, ITS, and trnL-F. Plant Syst. Evol., 291: 117-131.
10. Buchner, P, Prosser, I. M. and Hawkesford, M. J. 2004. Phylogeny and Expression of Paralogous and Orthologous Sulphate Transporter Genes in Diploid and Hexaploid Wheats. Genome, 47: 526-534.
11. Calonje, M., Martın-Bravo, S., Dobes, C., Gong, W., Jordon-Thaden, I., Kiefer, C., Kiefer, M., Paule, J., Schmickl, R. and Koch, M. A. 2009. Non-Coding Nuclear DNA Markers in Phylogenetic Reconstruction. Plant Syst. Evol., 282: 257280.
12. Chalupska, C., Lee, H. Y., Faris, J. D., Evrard, A., Chalhoub, B., Haselkorn, R. and Gronicki, P. 2008. Acchomoeoloci and the

Evolution of the Wheat Genomes. Proc. Natl. Acad. Sci. USA, 105: 9691-9696.
13. Dizkirici, A., Kansu, C. and Onde, S. 2016. Molecular Phylogeny of Triticum and Aegilops Genera Based on ITS and matK Sequence Data. Pak. J. Bot., 48: 143-153.
14. Doyle, J. J. and Doyle, J. L. 1987. A Rapid DNA Isolation Procedure for Small Quantities of Fresh Leaf Tissue. Phytochem. Bull., 19: 11-15.
15. Eig, A. 1929. MonographischKritischeubersicht der Gattung Aegilops. Feddes Rept., 55: 1-228.
16. Eilam, T., Anikster, Y., Millet, E., Manisterski, J., Sagi-Assif, O. and Feldman, M. 2007. Genome Size and Genome Evolution in Diploid Triticeae Species. Genome, 50: 1029-1037.
17. Fehrer, J., Gemeinholzer, B., Chrtek, J. and Brautigam, S. 2007. Incongruent Plastid and Nuclear DNA Phylogenies Reveal Ancient Intergeneric Hybridization in Pilosellahawk Weeds (Hieracium, Cichorieae, Asteraceae). Mol. Phylogenet. Evol., 42: 347-361.
18. Galili, S., Avivi, Y., Millet, E. and Feldmen, M. 2000. RFLP-Based Analysis of Three $R b c S$ Subfamilies in Diploid and Polyploid Species of Wheat. Mol. Gen. Genet., 263: 674-680.
19. Giorgi, D., D’Ovidio, R., Tanzarella, O. A. and Porceddu, E. 2002. RFLP Analysis of Aegilops Species Belonging to the sitopsis Section. Genet. Res Crop Evol., 49: 145151.
20. Golovnina, K. A., Glushkov, S. A., Blinov, A. G., Mayorov, V. I., Adkison, L. R. and Goncharov, N. P. 2007. Molecular Phylogeny of the Genus Triticum L. Pl. Syst. Evol., 264: 195-216.
21. Golovnina, K. A., Kondratenko, E. Y., Blinov, A. G. and Goncharov, N. P. 2009. Phylogeny of the A Genomes of Wild and Cultivated Wheat Species. Russ. J. Genet., 45: 1360-1367.
22. Goncharov, N. P., Bannikova, S. V. and Kawahara, T. 2007. Wheat Artificial Amphiploids with Triticum timopheevii Genome, Preservation and Reproduction of Wheat Artificial Amphiploids. Genet. Res. Crop. Evol., 54: 1507-1514.
23. Goryunova, S. V., Chikida, N. N., Gori, M. and Kochieva, E. Z. 2005. Analysis of Nucleotide Sequence Polymorphism of Internal Transcribed Spacers of Ribosomal

Genes in Diploid Aegilops (L.) Species. Mol Biol., 39: 173-176.
24. Haider, N. 2013. The Origin of the B Genome of Bread Wheat (Triticum aestivum L.). Russ. J. Genet., 49: 263-274.
25. Haque, I., Bandopadhyay, R. and Mukhopadhyay, K. 2009. Intraspecific Variation in Commiphora wightii Populations Based on Internal Transcribed Spacer (ITS1-5.8S-ITS2) Sequences of rDNA. Diversity, 1: 89-101.
26. Huang, S. A., Sirikhachornkit, J. D., Faris, X., Su, B., Gill, S., Haselkorn, R. and Gornicki, P. 2002. Phylogenetic Analysis of the Acetyl-CoA Carboxylase and 3Phosphoglycerate Kinase Loci in Wheat and Other Grasses. Plant Mol. Biol., 48: 805820.
27. Khlestkina, E. K. and Salina, E. A. 2001. Genome-Specific Markers of Tetraploid Wheats and Putative Diploid Progenitor Species. Plant Breed., 120: 227-232.
28. Kihara, H. 1954. Considerations on the Evolution and Distribution of Aegilops Species Based on the Analyzer-Method. Cytologia, 19: 336-357.
29. Kilian, B., Mammen, K., Millet, E., Sharma, R., Graner, A., Salamini, F., Hammer, K. and Ozkan, H. 2011. Aegilops, Wild Crop Relatives, Genomic and Breeding Resources. Cereals, Springer, PP. 1-76.
30. Kilian, B., Ozkan, H., Deusch, O., Effgen, S., Brandolini, A., Kohl, J., Martin, W. and Salamini, F. 2007b. Independent Wheat B and G Genome Origins in Outcrossing Aegilops Progenitor Haplotypes. Mol. Biol. Evol., 24: 217-227.
31. Kilian, B., Ozkan, H., Walther, A., Kohl, J., Dagan, T., Salamini, F. and Martin, W. 2007a. Molecular Diversity at 18 Loci in 321 Wild and 92 Domesticate Lines Reveal No Reduction of Nucleotide Diversity during Triticum monococcum (Einkorn) Domestication, Implications for the Origin of Agriculture. Mol. Biol. Evol., 24: 26572668.
32. Konarev, V. G., Gavrilyuk, I. P., Gubareva, N. K. and Peneva, T. I. 1979. Seed Protein in Genome Analysis, Cultivar Identification, and Documentation of Cereal Genetic Resources: A Review. Cereal Chem., 56: 272-278.
33. Logacheva, M. D., Valiejo-Roman, C. M., Degtjareva, G. V., Stratton, J. M., Downie, S. R., Samigullin, T. H. and Pimenov, M. G.
2010. A Comparison of nrDNA ITS and ETS Loci for Phylogenetic Inference in the Umbelliferae: An Example from Tribe Tordylieae. Mol. Phylogenet. Evol., 57: 471-476.
34. Nalini, E., Bhagwat, S. G. and Jawali, N. 2007. Identification and Characterization of Some ITS Variants from Hexaploid wheat (Triticum aestivum L.). Plant Sci., 173: 262268.
35. Nepolo, E., Chimwamurombe, P. M., Cullisand, C. A. and Kandawa-Schulz, M. A. 2010. Determining Genetic Diversity Based on Ribosomal Intergenic Spacer Length Variation in Marama Bean (Tylosema esculentum) from the Omipanda Area, Eastern Namibia. Afr. J. Plant Sci., 4: 368-373.
36. Nishikawa, K., Furutam Y., Yamada, T. and Kudo, S. 1992. Genetic Studies of α Amylase Isozymes in Wheat VII. Variation in Diploid Ancestral Species and Phylogeny of Tetraploid Wheat. Jpn. J. Genet., 67: 115.
37. Pathak, G. N. 1940. Studies in the Cytology of Cereals. J. Genet., 39: 437.
38. Petersen, G., Seberg, O., Yde, M. and Berthelsen, K. 2006. Phylogenetic Relationships of Triticum and Aegilops and Evidence for the Origin of the A, B, and D Genomes of Common Wheat (Triticum aestivum). Mol. Phylogenet. Evol., 39: 7082.
39. Poczai, P. and Hyvonen, J. 2010. Nuclear Ribosomal Spacer Regions in Plant Phylogenetics, Problems and Prospects. Mol. Biol. Rep., 37: 1897-1912.
40. Porter, C. H. and Collins, F. H. 1991. Species-Diagnostic Differences in the Ribosomal DNA Internal Transcribed Spacer from the Sibling Species Anopheles freeborni and Anopheles hermsi (Diptera: Culicidae). Am. J. Trop. Med. Hyg., 45: 271-279.
41. Riley, R. and Chapman, V. 1960. The D Genome of Hexaploid Wheat. Wheat Info. Serv., 11: 18-19.
42. Sallares, R. and Brown, T. A. 1999. PCRBased Analysis of the Intergenic Spacers of the Nor Loci on the A Genomes of Triticum Diploids and Polyploids. Genome, 42: 16128.
43. Sallares, R. and Brown, T. A. 2004. Phylogenetic Analysis of Complete 59 External Transcribed Spacers of the $18 S$

Ribosomal RNA Genes of Diploid Aegilops and Related Species (Triticeae, Poaceae). Genet. Resour. Crop Evol., 51: 701-712.
44. Sasanuma, T., Chabane, K., Endo, T. R. and Valkoun, J. 2004. Characterization of Genetic Variation in and Phylogenetic Relationships among Diploid Aegilops Species by AFLP, Incongruity of Chloroplastand Nuclear Data. Theor. Appl. Genet., 108: 612-618.
45. Sharma, S., Rustgi, S., Balyan, H. S. and Gupta, P.K. 2002. Internal Transcribed Spacer (ITS) Sequences of Ribosomal DNA of Wild Barley and Their Comparison with ITS Sequences in Common Wheat. Barley Genet. Newsl., 32: 1T38-45.
46. Singh, A., Devarumath, R. M., Ramarao, S., Singh, V. P.and Raina, S. N. 2008. Assessment of Genetic Diversity and Phylogenetic Relationships Based on Ribosomal DNA Repeat Unit Length Variation and Internal Transcribed Spacer (ITS) Sequences in Chickpea (Cicerarietinum) Cultivars and Its Wild Species. Genet. Resour. Crop Evol., 55: 6579.
47. Sliai, A. M. and Amer, S. A. M. 2011. Contribution of Chloroplast DNA in the Biodiversity of Some Aegilops Species. Afr. J. Biotechnol., 10: 2212-2215.
48. Vakhitov, V. A., Chemeris, A. V., Sabirzhanov, B. E., Akhunov, E. D., Kulikov, A. M., Nikonorov, Y. M., Gimalov, F. R., Bikbulatova, S. M. and Baymiev, A. K. 2003. The Phylogeny of

Triticum L. and Aegilops L. Inferred from Comparative Analysis of Nucleotide Sequences in rDNA Promoter Regions. Russ. J. Genet., 39: 1-11.
49. Van-Slageren, M. W. 1994. Wild Wheats, a Monograph of Aegilops L. and Amblyopyrum (Jaub. \&Spach) Eig (Poaceae). Joint Publication of ICARDA, Aleppo, Syria and Wageningen Agricultural University, The Netherlands.
50. Wang, G. Z., Matsuoka, Y. and Tsunewaki, K. 2000. Evolutionary Features of Chondriome Divergence in Triticum (wheat) and Aegilops Shown by RFLP Analysis of Mitochondrial DNAs. Theor. Appl. Genet., 100: 221-231.
51. Wang, J. B., Wang, C., Shi, S. H. and Zhong, Y. 2000. ITS Regions in Diploids of Aegilops (Poaceae) and Their Phylogenetic Implications. Hereditas, 132: 209-213.
52. Yamane, K. and Kawahara, T. 2005. Intra and Interspecific Phylogenetic Relationships among Diploid Triticum-Aegilops Species (Poaceae) Based on Base-Pair Substitutions, Indels, and Microsatellites in Chloroplast Noncoding Sequences. Am. J. Bot., 92: 1887-1898.
53. Zhang, W., Qu, L. J., Gu, H., Gao, W., Liu, M., Chen, J. and Chen, Z. 2002. Studies on the Origin and Evolution of Tetraploid Wheats Based on the Internal Transcribed Spacer (ITS) Sequences of Nuclear Ribosomal DNA. Theor. Appl. Genet., 104: 1099-1106.

فيلوزنى مولكولى گونههاى .Triticum L. وegilops L با استفاده از فاصلهاندازهاى بين رونوشتهاى زنهای ريبوزومى

ز. صفرى، و ع. ا. مهرابى

 را از هم جدا كند و سه

 Ae. مشاهده شد. نتايج به دست آمهه همحچخنين نشان دادند كه (Ae. cylindrica و Ae. crassa)

 Aegilops L. وTriticum L

[^0]: ${ }^{1}$ Department of Agronomy and Plant Breeding, Ilam University, Ilam, Islamic Republic of Iran.

 * Corresponding author; e-mail: alia.mehrabi@yahoo.com

